Pre-analytic and Analytic Laboratory Issues in Coagulation Testing

Dr. Prashant Tembhare, MD

Asst Professor, TMC Email: docprt@gmail.com

Serious consequences due to errors in routine coagulation testing.

Falsely prolonged results

- further costly and time consuming investigations,
- unnecessarily delay invasive procedures, and
- raise unnecessary anxiety in the patient

False-normal results prevent

- further evaluation of factor assays,
- unjustified risk of bleeding with invasive procedures

False low or high coagulation time in anticoagulant t/t monitoring

- incorrect dosing
- risk of thrombosis or bleeding depending

Pre-analytical Issues

Errors in Laboratory Medicine

Pre-analytical – Patient's History

- Aspirin PFT
- Heparin APTT
- Warfarin PT/INR
- Contraceptives
- FXIII one month

- Smoking Plt Act
- Excess physical activity
- Stress
- Pregnancy

Positive Patient & Sample Identification

Collector Three-Way Identification Check Patient Identification Verbal check and ID Band if present Pathology Request

Outpatient setting - the principle of "double identifiers"

patients should identify themselves and some form of identification.

Hospital Settings

Case Number electronic or bar-code methods printing tube labels;

matching patient identification with 2 identifiers

patient's full name and date of birth or medical record number; and collection date & time.

Sample Collection

- No finger prick
- Avoid Central line heparinized
- Untraumatic venipuncture
- Prolonged use of a tourniquet
- Right gauge needle hemolysis/aPlt
 - 21G recommended

Volume of sample

- Low high anticoagulant
- High low anticoagulant

Sample Collection

Important

Anticoagulant of choice - 3.8% or 3.2% Sodium Citrate

 3.2 % Preferred - due to stability and closeness to the plasma osmolality

- Anticoagulant/blood ratio is critical (1:9)
 - Exact amount of blood must be drawn.
 - No short draws are acceptable- falsely increase results
 - CLSI guideline is 90 % of calibrated volume
- Purpose of the anticoagulant is to bind or chelate calcium to prevent clotting of specimen

Order of Sample Collection

3.2% Sodium citrate (1:9)- Coagulation

Plane (no additive) – Serum studies

Thrombin based clot activat - Chemistry

Heparin – FCM, Cytogenetics

K2/K3 EDTA - CBC

K2 EDTA – Bl bank

Sodium citrate (1:4)- ESR

Sod Fluoride+ Pot Oxalate – Bl Sugar

Acid Citrate Dextrose sol A

Correction Formula: High Hematocrits

CLSI - Adjust anticoagulant ratio for hematocrits > 55%

Formula to calculate amount of anticoagulant

Where: C= volume of sodium citrate

V=volume of whole blood drawn

Hct= patient's hematocrit

Example:

If hematocrit of 60%, and blood is to be drawn into a 2.7 mL blue top-tube.

Patients Hct= 60% & V= 2.7 mL

$$(100-60) * 2.7mL = 0.2 mL$$

(595-60)

Sample Collection

Mixing of sample

- Vigorous Hemolysis false short PT/PTT
 - Platelet activation false short PT/PTT
- Inadequate clot formation false short PT/PTT
- Mix thoroughly but gently by 3 to 6 end-over-end tube inversions
- Order of draw coagulation tube is always first
 except for blood culture.
- PT/INR and APTT not affected by first tube drawn
- Winged blood collection set for venipuncture
- <u>a discard tube</u> should be drawn first.

Blood should never be transferred from one tube to other

Sample Transport

- Non-refrigerated at ambient temperature (15-22°C)
- in as short a time as possible.
- Ideally, routine coagulation tests within 4 hrs
- APTT testing for unfractionated heparin monitoring process within 1 hr
- Avoid extremes of temp (ie, both refrigerated or high)
- Delays in transport may affect labile factors (FV, FVIII)
- local centrifugation and separation of plasma followed by freezing and frozen transport

Sample Processing - Centrifugation

Swing-out bucket rotor should be used

- "Double centrifuge" to ensure platelet-free preparations prior to freezing for LA testing
- Before processing check for clot formation/hemolysis

Issues related to Storage

- Frozen at -20°C for up to two weeks or
 - -70°C for up to six months
- Inadequately thawed inhomogeneous sampling
 - Cryoprecipitate portion would be selectively sampled
 - very high levels of FVIII:C, VWF, Fibrinogen or FXIII.
 - Cryo poor part
 - very low levels of FVIII:C, VWF, Fibrinogen or FXIII.

Frozen samples should be thawed and mixed at 37°C water bath before testing.

Cold activation at 2-4°C is not known to occur in 4 hrs.

Cold activation will result in activation of FVII and also FIX resulting in falsely decreasing the times in PT and APTT tests respectively.

Freeze-thawing Events

- Loss of some labile factors, notably FV and FVIII.
- Since it is not always clear how many times a sample has been thawed and refrozen prior to testing,
- Retesting using a fresh sample is always indicated if unexpected low factor results
- Unexplained abnormal result a new specimen and

Preparation of reagents

- Improper reconstitution of reagents.
- Reagent stability.
- Contamination of reagents.
- Lot variation.
- Wrong labeling of reagents.
- Deterioration of buffer.
- Stability of factor deficient plasma.
- Correction studies
- Adsorbed plasma PT > 60s < 90s to ensure adequate adsorption and prevent over adsorption that leads to loss of FVIII and FV.
- Aged serum activated factors 3 separate serum samples for mixing as there is a risk of activated factors clotting and correcting FVIII / FV deficiency.

Intra-laboratory handling, preparation and storage of samples

- Registration, identification
- Visual Inspection for clots, Hemolysis, Lipemia etc
- Centrifugation
- Proper Distribution
- Storage (to analysis performed not-daily, for post-analysis if it is needed)

Intra-laboratory handling - Common problems

Typical errors	Consequences
native blood centrifugated before clotting	haemolysed sample, fibrin stand in serum, clogging
inappropriate melting of frozen specimens	concentration-gradient or precipitation, false result
inappropriate storage of samples in lab (sample ID lost, contamination, break down, instable components etc.)	false results contamination
clots in anticoagulated blood cryoglobulins	false results

Solution: New sample requested when necessary.

Common interferences

Typical errors	Consequences
in vitro haemolysis	•high K, LDH, HBDH
	•interference with many analytical procedures
hyperlipidaemia	•pseudo-hyponatraemia
	•interference with many analytical procedures
hyperbilirubinaemia	•interference with many analytical procedures
drugs	•interference with many analytical procedures

Solution: New sample requested when possible.

Alternative methods used. Results commented.

Under-recognized Pre-analytical Issues

- Normal Reference Range (NRR) Derivations
 NRR = mean +/- 2SD → 5% outside NRR False Abnormal
- International Normalized Ratio (INR)=(patient PT/MNPT)^{ISI}
 where MNPT= mean of normal PT, and ISI=international sensitivity index.
- WHO recommend the use of PT reagent that have an ISI between 0.9-1.7.
- PT reagents with ISI of less than 1.4 is good and quite easily available.
- Biological variations
 Physical activity
 Stress

•

Analytic Issues

- Instrument related automated
 - Daily Controls:- 2 levels are adequate and a must.
 - It is recommended to run after
 - every 40 samples in laboratories with heavy workload,
 - Otherwise beginning of the day,
 - at least once in each shift or
 - with each group of tests
 - Periodic maintainance
 - External Quality Assessment Programme EQAS
- Clot formation based Semiautomated instruments
 - The difference between duplicate tests should agree within 10% of their mean value.

Post-analytic Issues

- Reporting :-
- report the results of PT and APTT on basis of own NRR
- INR is reported as such and not with a reference interval.
- Results to wrong patients –
- check patient's name, ID number, Case Number
- Minimum 2 should match

Record & Analyze the Errors

Record & analyze the errors – Monthly & yearly

Take Home Massage

